Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 148(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34355743

RESUMO

Because both dearth and overabundance of histones result in cellular defects, histone synthesis and demand are typically tightly coupled. In Drosophila embryos, histones H2B, H2A and H2Av accumulate on lipid droplets (LDs), which are cytoplasmic fat storage organelles. Without LD binding, maternally provided H2B, H2A and H2Av are absent; however, how LDs ensure histone storage is unclear. Using quantitative imaging, we uncover when during oogenesis these histones accumulate, and which step of accumulation is LD dependent. LDs originate in nurse cells (NCs) and are transported to the oocyte. Although H2Av accumulates on LDs in NCs, the majority of the final H2Av pool is synthesized in oocytes. LDs promote intercellular transport of the histone anchor Jabba and thus its presence in the ooplasm. Ooplasmic Jabba then prevents H2Av degradation, safeguarding the H2Av stockpile. Our findings provide insight into the mechanism for establishing histone stores during Drosophila oogenesis and shed light on the function of LDs as protein-sequestration sites.


Assuntos
Histonas/metabolismo , Gotículas Lipídicas/metabolismo , Animais , Proteínas de Transporte/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Oócitos/metabolismo , Oogênese/fisiologia
2.
Insect Biochem Mol Biol ; 133: 103512, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33307187

RESUMO

The Seipin protein is a conserved key component in the biogenesis of lipid droplets (LDs). Recently, a cooperation between human Seipin and the Lipid droplet assembly factor 1 (LDAF1) was described. LDAF1 physically interacts with Seipin and the holocomplex safeguards regular LD biogenesis. The function of LDAF1 proteins outside mammals is less clear. In yeast, the lipid droplet organization (LDO) proteins, which also cooperate with Seipin, are the putative homologs of LDAF1. While certain functional aspects are shared between the LDO and mammalian LDAF1 proteins, the relationship between the proteins is under debate. Here, we identify the Drosophila melanogaster protein CG32803, which we re-named to dmLDAF1, as an insect member of this protein family. dmLDAF1 decorates LDs in cultured cells and in vivo and the protein is linked to the fly and mouse Seipin proteins. Altering the dmLDAF1 abundance affects LD size, number and overall lipid storage amounts. Our results suggest that the LDAF1 proteins thus fulfill an evolutionarily conserved function in the biogenesis and biology of LDs.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Membrana , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/isolamento & purificação , Proteínas de Drosophila/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Humanos , Metabolismo dos Lipídeos , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo
3.
J Cell Sci ; 130(18): 3141-3157, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28775149

RESUMO

Lipid droplets (LDs) are the principal organelles of lipid storage. They consist of a hydrophobic core of storage lipids, surrounded by a phospholipid monolayer with proteins attached. While some of these proteins are known to be essential for the regulation of cellular and organismic lipid metabolism, key questions concerning LD protein function, such as their targeting to LDs, are still unanswered. Intriguingly, some proteins are restricted to subsets of LDs by an as-yet-unknown mechanism. This finding makes LD targeting even more complex. Here, we characterize the Drosophila protein CG2254, which is targeted to subsets of LDs in cultured cells and in different larval Drosophila tissues, where the prevalence of subsets of LDs appears highly dynamic. We find that an amphipathic amino acid stretch mediates CG2254 LD localization. Additionally, we identified a juxtaposed sequence stretch limiting CG2254 localization to a subset of LDs. This sequence is sufficient to restrict a chimeric protein consisting of the subset-targeting sequence introduced to an otherwise pan-LD-localized protein sequence to a subset of LDs. Based on its subcellular localization and annotated function, we suggest that CG2254 is renamed Lipid droplet subset dehydrogenase 1 (Ldsdh1).


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Gotículas Lipídicas/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Sequência Conservada , Proteínas de Drosophila/química , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Evolução Molecular , Humanos , Proteínas Associadas a Gotículas Lipídicas , Lipogênese/efeitos dos fármacos , Ácido Oleico/farmacologia , Transporte Proteico/efeitos dos fármacos , Frações Subcelulares/metabolismo
4.
Mol Cell Proteomics ; 16(3): 329-345, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27956707

RESUMO

A critical challenge for all organisms is to carefully control the amount of lipids they store. An important node for this regulation is the protein coat present at the surface of lipid droplets (LDs), the intracellular organelles dedicated to lipid storage. Only limited aspects of this regulation are understood so far. For the probably best characterized case, the regulation of lipolysis in mammals, some of the major protein players have been identified, and it has been established that this process crucially depends on an orchestrated set of protein-protein interactions. Proteomic analysis has revealed that LDs are associated with dozens, if not hundreds, of different proteins, most of them poorly characterized, with even fewer data regarding which of them might physically interact. To comprehensively understand the mechanism of lipid storage regulation, it will likely be essential to define the interactome of LD-associated proteins.Previous studies of such interactions were hampered by technical limitations. Therefore, we have developed a split-luciferase based protein-protein interaction assay and test for interactions among 47 proteins from Drosophila and from mouse. We confirmed previously described interactions and identified many new ones. In 1561 complementation tests, we assayed for interactions among 487 protein pairs of which 92 (19%) resulted in a successful luciferase complementation. These results suggest that a prominent fraction of the LD-associated proteome participates in protein-protein interactions.In targeted experiments, we analyzed the two proteins Jabba and CG9186 in greater detail. Jabba mediates the sequestration of histones to LDs. We successfully applied our split luciferase complementation assay to learn more about this function as we were e.g. able to map the interaction between Jabba and histones. For CG9186, expression levels affect the positioning of LDs. Here, we reveal the ubiquitination of CG9186, and link this posttranslational modification to LD cluster induction.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Gotículas Lipídicas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Animais , Hidrolases de Éster Carboxílico , Histonas/metabolismo , Luciferases/metabolismo , Camundongos , Mapas de Interação de Proteínas , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...